Concept: Cellular membranes are fluid mosaics of lipids and proteins

1. The large molecules of all living things fall into just four main classes. Name them.

2. Explain what is meant when we say a molecule is amphipathic.

3. Who proposed the fluid mosaic model of membrane structure? When? Describe this model.

4. What is meant by membrane fluidity? Describe the movements seen in the fluid membrane.

5. Describe how each of the following can affect membrane fluidity:
 a. decreasing temperature
 b. phospholipids with unsaturated hydrocarbon chains
 c. cholesterol

6. Membrane proteins are the mosaic part of the model. Describe each of the two main categories:

 integral proteins

 peripheral proteins
7. Briefly describe major functions of membrane proteins.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport</td>
<td></td>
</tr>
<tr>
<td>Enzymatic activity</td>
<td></td>
</tr>
<tr>
<td>Signal transduction</td>
<td></td>
</tr>
<tr>
<td>Cell-cell recognition</td>
<td></td>
</tr>
<tr>
<td>Intercellular joining</td>
<td></td>
</tr>
<tr>
<td>Attachment to cytoskeleton and ECM</td>
<td></td>
</tr>
</tbody>
</table>

8. Membrane carbohydrates are important in cell-cell recognition. What are two examples of this?

9. Distinguish between *glycolipids* and *glycoproteins*.
10. Label the following structures:
Glycolipid, glycoprotein, integral protein, peripheral protein, cholesterol
phospholipid, ECM fibers, cytoskeleton, microfilaments, integrins

Concept: Membrane structure results in selective permeability

11. Distinguish between channel proteins and carrier proteins.

12. Are transport proteins specific? Cite an example that supports your response.

13. Peter Agre received the Nobel Prize in 2003 for the discovery of aquaporins. What are they?
14. Consider the following materials that must cross the membrane. For each, tell how it is accomplished.

<table>
<thead>
<tr>
<th>Material</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td></td>
</tr>
<tr>
<td>glucose</td>
<td></td>
</tr>
<tr>
<td>H⁺</td>
<td></td>
</tr>
<tr>
<td>O₂</td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td></td>
</tr>
</tbody>
</table>

Concept: Passive transport is diffusion of a substance across a membrane with no energy investment.

15. Define the following terms:

- diffusion
- concentration gradient
- passive transport
- osmosis
- isotonic
- hypertonic
- hypotonic
- turgid
- flaccid
- plasmolysis
16. What is facilitated diffusion? Is it active or passive? Cite two examples.

17. Label the hypotonic solution, isotonic solution, and hypertonic solution. What is indicated by the blue arrows? Label them. Which cell is lysed? Turgid? Flaccid? Plasmolyzed? Apply all these labels.

18. Why doesn’t the plant cell burst?

Concept: Active transport uses energy to move solutes against their gradients

19. Describe active transport. What type of transport proteins are involved, and what is the role of ATP in the process?
20. The sodium-potassium pump is an important system for you to know. Use the following diagram to understand how it works. Use the following terms to label these figures, and briefly summarize what is occurring in each figure:

extracellular fluid, cytoplasm, Na+, K+, ATP, ADP, P, transport protein.

Summary

1.
2.
3.
4.
5.
6.

21. On the diagram below, add these labels: facilitated diffusion with a carrier protein, facilitated diffusion with a channel protein, active transport with a carrier protein, simple diffusion. For each type of transport, give an example of a material that is moved in this manner.

22. What is membrane potential? Which side of the membrane is positive?
23. What are the two forces that drive the diffusion of ions across the membrane? What is the combination of these forces called?

24. What is cotransport? Explain how understanding it is used in our treatment of diarrhea.

Concept: Bulk transport across the plasma membrane occurs by exocytosis and endocytosis

25. Define each of the following, and give a specific cellular example.

 - endocytosis
 - phagocytosis
 - pinocytosis
 - exocytosis
 - receptor-mediated endocytosis

26. What is a ligand? What do ligands have to do with receptor-mediated endocytosis?