Define the following:

A. Elastic Collision: Objects bounce

B. Inelastic Collision: Objects stick together

C. Friction: causes heat and wear, always opposes motion

D. Joule: Newton meter

E. Watt: Joules per second

Problems:

1. What is the momentum of an object that is 64 kg and is travelling at 9 m/s?

 \[64 \times 9 = 576 \text{ kgm/s} \]

2. If an object that is 343 kg is travelling at 12 m/s to the east, a second 201 kg object is travelling a 33 m/s to the west, they collide and stick together, what is the result of the collision?

 \[(343 \times 12) + (201 \times (-33)) = (343 + 201) V_3 \]
 \[4116 + (-6633) = 544 V_3 \]
 \[-2517 / 544 = -4.6 \text{ m/s} \]

3. A Ford Expedition with a mass of 2500 kg hits a Smart Car with a mass of 1136 kg head on and they stick together. They were both travelling at 17 m/s, but in opposite directions. Which way do they end up moving and how fast?

 \[(2500 \times 17) + (1136 \times (-17)) = (2500 + 1136) V_3 \]
 \[42500 + (-19312) = 3636V_3 \]
 \[23188 / 3636 = 6.38 \text{ m/s} \]
4. You push a box with a force of 32N for a distance of 10m. How much work was done?

$$W = Fd = 32 \times 10 = 320 \text{ J}$$

5. You lift that same box up 2m, how much work was done?

$$W = mgh, 32\text{N} = mg, \text{ so } W = (32)h = 32(2) = 64 \text{ J}$$

6. You carry that same box on your shoulder a distance of 20m. How much work was done?

Carrying is not work!

7. If you lift a 30 kg box up 5m in 3 seconds, how much power did you use?

$$W = mgh \text{ and } P = \frac{W}{t}, \text{ so } P = \frac{mgh}{t} \quad 30(9.8)5 / 3 = 490 \text{ W}$$

8. What takes more power to accomplish: lifting a 40kg box up 7m in 4 seconds, or a 5N box up the same height in the same amount of time?

Same as above, so $40(9.8)7 / 4 = 686 \text{ W}$, and $Fd / t = 5(7) / 4 = 8.75 \text{ W}$

9. If you weigh 60kg and ran up our stairs (4m) in 5 seconds, how much power did you generate?

Again, $W = mgh \text{ and } P = \frac{W}{t}, \text{ so } P = \frac{mgh}{t} \quad 60(9.8)4 / 5 = 470.5 \text{ W}$

10. If you generate 200 Watts of power running up stairs in 8 seconds, how much work did you do?

$$P = \frac{W}{t}$$
$$W / 8 = 200$$
$$W = 1600 \text{ J}$$